Distribusi Frekuensi-Magnitudo Gempa Mikro Akibat Aktivitas Stimulasi Hidrolik pada Lapangan Panas Bumi Tipe Hot Dry Rock (HDR)

Authors

  • Nanda Hanyfa Maulida Universitas Lampung
  • Muhamad Firdaus Al Hakim Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • Hesti Universitas Lampung
  • Suharno Universitas Lampung

DOI:

https://doi.org/10.62287/jtti.v1i4.67

Keywords:

Geothermal Exploration, Micro-Earthquake, Frequency-Magnitude Distribution, Hot Dry Rock, B-Value

Abstract

A series of hydraulic stimulations were conducted to enhance permeability and increase the production of hot fluid in a Hot Dry Rock (HDR) geothermal field. The stimulation involved injecting water into the hot rock, inducing hydraulic fracturing and resulting in over 2000 micro-earthquake events within the field. Utilizing existing microearthquake data, an analysis of the microearthquake distribution was performed, along with calculating the gradient of the frequency-magnitude distribution of microearthquakes (b-value) to assess the heterogeneity conditions induced by high pore pressure. The hypocenter distribution is centered around injection and production locations, displaying a trend that aligns with the main structure trending southwest to northeast. The mapping of b-values indicates elevated values in the hydraulic stimulation area, believed to be associated with increased pore pressure resulting from the higher fluid volume in that region. Moreover, high b-values were identified beneath the production area, suggesting the potential migration of injection fluid from the hydraulic stimulation process.

References

Aki, K. (1965). Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits. Bull. Earthquake Res. Inst., Tokyo Univ., 43, 237–239.

Bachmann, C. E., Wiemer, S., Goertz-Allmann, B. P., & Woessner, J. (2012). Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012GL051480

Benato, S., Hickman, S., Davatzes, N. C., Taron, J., Spielman, P., Elsworth, D., Majer, E. L., & Boyle, K. (2016). Conceptual model and numerical analysis of the Desert Peak EGS project: Reservoir response to the shallow medium flow-rate hydraulic stimulation phase. Geothermics, 63, 139–156. https://doi.org/10.1016/j.geothermics.2015.06.008

Bender, B. (1983). Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America, 73(3), 831–851.

Bi̇li̇m, F. (2019). The correlation of b-value in the earthquake frequency-magnitude distribution, heat flow and gravity data in the Sivas Basin, central eastern Turkey. Bitlis Eren University Journal of Science and Technology, 9(1), 11–15. https://doi.org/10.17678/beuscitech.467269

Chabora, E., Zemach, E., Spielman, P., Drakos, P., Hickman, S., Lutz, S., Boyle, K., Falconer, A., Tait, A., Davatzes, N., Rose, P., Majer, E., & Jarpe, S. (2012). Hydraulic Stimulation of Well 27-15, Desert Peak Geothermal Field, Nevada, USA.

Cuenot, N., Dorbath, C., & Dorbath, L. (2008). Analysis of the Microseismicity Induced by Fluid Injections at the EGS Site of Soultz-sous-Forêts (Alsace, France): Implications for the Characterization of the Geothermal Reservoir Properties. Pure and Applied Geophysics, 165, 797–828. https://doi.org/10.1007/s00024-008-0335-7

El-Isa, Z. H., & Eaton, D. W. (2014). Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: Classification and causes. Tectonophysics, 615, 1–11.

Fanchi, J. R. (2010). 16—Modern Reservoir Management Applications. Dalam J. R. Fanchi (Ed.), Integrated Reservoir Asset Management (hlm. 279–293). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-382088-4.00016-5

Kagan, Y. Y. (1999). Is Earthquake Seismology a Hard, Quantitative Science? Dalam M. Wyss, K. Shimazaki, & A. Ito (Ed.), Seismicity Patterns, their Statistical Significance and Physical Meaning (hlm. 233–258). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8677-2_3

Kamer, Y., & Hiemer, S. (2015). Data‐driven spatial B value estimation with applications to California seismicity: To B or not to B . Journal of Geophysical Research: Solid Earth, 120(7), 5191–5214. https://doi.org/10.1002/2014JB011510

Kissling, E. (1995). Velest User’s Guide. Int. Inst. Geophys., 1–26.

McNutt, S. R. (2005). VOLCANIC SEISMOLOGY. Annual Review of Earth and Planetary Sciences, 33(1), 461–491. https://doi.org/10.1146/annurev.earth.33.092203.122459

Mousavi, S. M., Ogwari, P. O., Horton, S. P., & Langston, C. A. (2017). Spatio-temporal evolution of frequency-magnitude distribution and seismogenic index during initiation of induced seismicity at Guy-Greenbrier, Arkansas. Physics of the Earth and Planetary Interiors, 267, 53–66. https://doi.org/10.1016/j.pepi.2017.04.005

Murru, M., Console, R., Falcone, G., Montuori, C., & Sgroi, T. (2007). Spatial mapping of the b value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005. Journal of Geophysical Research: Solid Earth, 112(B12), 2006JB004791. https://doi.org/10.1029/2006JB004791

Nava, F., Márquez-Ramírez, V., Zúñiga, F., Ávila-Barrientos, L., & Quinteros Cartaya, C. (2017). Gutenberg-Richter b-value maximum likelihood estimation and sample size. Journal of Seismology, 21. https://doi.org/10.1007/s10950-016-9589-1

Northern California Earthquake Data Center. (2014). Northern California Earthquake Data Center [dataset]. Northern California Earthquake Data Center. https://doi.org/10.7932/NCEDC

Pearson, C. (1981). The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. Journal of Geophysical Research: Solid Earth, 86(B9), 7855–7864. https://doi.org/10.1029/JB086iB09p07855

Roberts, N. S., Bell, A. F., & Main, I. G. (2015). Are volcanic seismic b-values high, and if so when? Journal of Volcanology and Geothermal Research, 308, 127–141.

Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539–542.

Schuler, J., Pugh, D. J., Hauksson, E., White, R. S., Stock, J. M., & Brandsdóttir, B. (2016). Focal mechanisms and size distribution of earthquakes beneath the Krafla central volcano, NE Iceland. Journal of Geophysical Research: Solid Earth, 121(7), 5152–5168. https://doi.org/10.1002/2016JB013213

Soelaiman, T. A. F. (2016). 7—Geothermal energy. Dalam M. H. Rashid (Ed.), Electric Renewable Energy Systems (hlm. 114–139). Academic Press. https://doi.org/10.1016/B978-0-12-804448-3.00007-4

US Department of Energy. (2013). Desert Peak EGS Project.

Utsu, T. (1965). A method for determining the value of b in a formula log n= a= bM showing the magnitude frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ., 13, 99–103.

Vermylen, J. P., & Zoback, M. D. (2011). Hydraulic fracturing, microseismic magnitudes, and stress evolution in the Barnett Shale, Texas, USA. SPE Hydraulic Fracturing Technology Conference. https://onepetro.org/SPEHFTC/proceedings/11HFTC/SPE-140507-MS/150022

Wiemer, S. (2001). A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382. https://doi.org/10.1785/gssrl.72.3.373

Wiemer, S., & Wyss, M. (1997). Mapping the frequency‐magnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research: Solid Earth, 102(B7), 15115–15128. https://doi.org/10.1029/97JB00726

Wiemer, S., & Wyss, M. (2000). Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114

Zhou, R., Huang, G. D., Snelling, P., Thornton, M. P., & Mueller, M. (2013). Magnitude calibration for microseismic events from hydraulic fracture monitoring. SEG International Exposition and Annual Meeting, SEG-2013. https://onepetro.org/SEGAM/proceedings-abstract/SEG13/All-SEG13/SEG-2013-0648/100058

Downloads

Published

2023-12-23

How to Cite

Nanda Hanyfa Maulida, Muhamad Firdaus Al Hakim, Hesti, & Suharno. (2023). Distribusi Frekuensi-Magnitudo Gempa Mikro Akibat Aktivitas Stimulasi Hidrolik pada Lapangan Panas Bumi Tipe Hot Dry Rock (HDR). Jurnal Teknik Dan Teknologi Indonesia, 1(3), 10–20. https://doi.org/10.62287/jtti.v1i4.67